

TearCare[®] Compared to Restasis for Dry Eye Disease

The SAHARA RCT

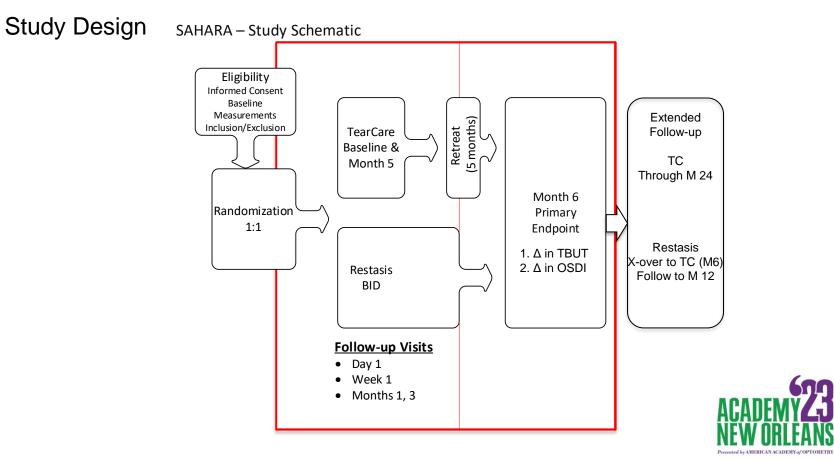
Marc Bloomenstein OD FAAO Thomas Chester OD FAAO Bobby Saenz OD MS FAAO

Full Title: Aqueous Retention and Meibum Outflow Restoration (ARMOR[™]) Procedure Compared to Cyclosporine Ophthalmic Emulsion 0.05% (Restasis®) Eyedrops to Treat the Signs and Symptoms of Dry Eye Disease: A Randomized, Controlled Trial.

Disclosure statement:

- Dr. Bloomenstein: consultant for and honoraria (speaker) from Allergan and Sight Sciences; Clinical Investigator in the SAHARA study
- Dr. Chester: grant support, consulting, and speaking for Sight Sciences; Clinical Investigator in the SAHARA study
- Dr. Saenz: consultant and speaker for Sight Sciences and Allergan; Clinical Investigator in the SAHARA study

Objectives and Background


- Dry Eye Disease (DED) may be the most common ocular affliction globally
- Meibomian gland dysfunction (MGD) may be the leading cause¹
- Treatment approaches include lid hygiene, medications (e.g. liftegrast, cyclosporine), or procedural based options such as TearCare
- TearCare (Sight Sciences) is a next generation office-based thermal therapeutic eyelid technology cleared by the US Food and Drug Administration for the treatment of evaporative DED due to MGD.
- Restasis is the leading prescription medication used to treat DED

The aim of this study was to compare the effectiveness of Restasis twice-daily versus next generation TearCare technology (2 procedures, baseline and month 5) at 6 months after initiation of treatment on improvement of signs and symptoms of DED.

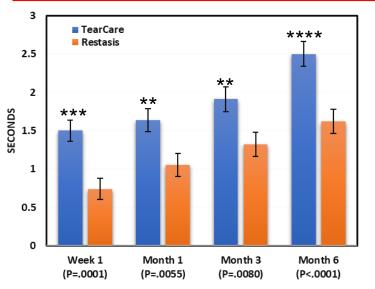
¹Nichols KK, et al. Invest Ophthalmol Vis Sci. 2011;52(4):1922-1929.

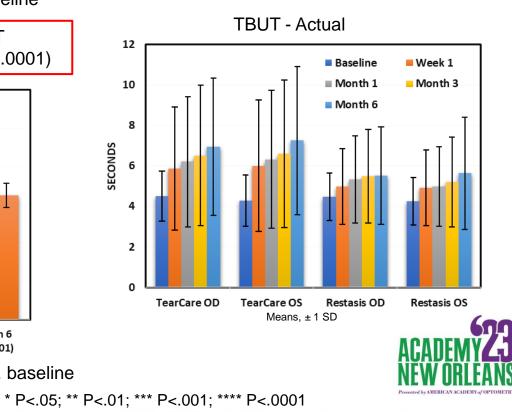
1

W.

Baseline demographic and baseline ocular characteristics

	All subjects	TearCare	Restas	sis Significance
Subject-level parameters	N=341	N=168	N=173	3 (p)
Age (yr), mean (SD)	56.2 (14.0)	55.5 (14.9)	56.8 (13	0.4057
Gender, n (%)				
Female	244 (71.6)	No Baseli	ne -	0.3120
Male	97 (28.4)	differences		0)
Race, n (%) White	302 (88.6)			2)
Black/African American	18 (5.3)			.3)
Asian	16 (4.7)	groups) 0.4979
Other/Mixed	5 (1.5)	groups	1.7	,
OSDI, mean (SD)	50.04 (14.74)	50.13 (14.64)	49.96 (14	.87) 0.9164
EDS, mean (SD)	64.50 (19.08)	64.67 (18.87)	64.33 (19	0.33) 0.8706
SANDE score, mean (SD)	66.54 (18.01)	66.12 (17.38)	66.95 (18	8.65) 0.6705
Eye-level parameters, mean* (SD)				
TBUT (sec)	4.38 (1.21)	4.39 (1.25)	4.37 (1.1	18) 0.8636
MGSS	7.16 (3.12)	7.20 (3.06)	7.12 (3.1	19) 0.8255
No. meibomian glands yielding any liquid (MGYLS) (n)	1.14 (1.45)	1.12 (1.48)	1.16 (1.4	43) 0.7708
No. meibomian glands yielding clear liquid (MGYCS) (n)	0.08 (0.38)	0.08 (0.38)	0.09 (0.3	38) 0.8560
Corneal staining score	2.76 (2.59)	2.63 (2.46)	2.89 (2.7	72) 0.3874
Conjunctival staining score	3.52 (3.47)	3.29 (3.51)	3.38 (3.4	44) 0.8102
Schirmer (mm)	9.39 (3.02)	9.49 (2.90)	9.30 (3.1	13) 0.5837

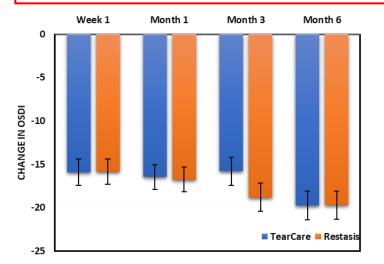



*average of OD and OS

SAHARA – 1st Primary Effectiveness Endpoint - TBUT

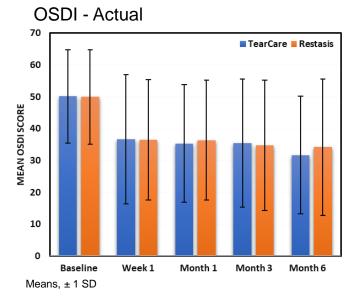
Endpoint - TBUT Change from Baseline

TearCare <u>superior</u> to Restasis in TBUT change from baseline at 6 months (P<.0001)


All time points, both groups p<.0001 vs. baseline

Analysis: Linear mixed effects with adjustment for baseline, site, and random subject effect. LS means, ± 1 SE

SAHARA – 2nd Primary Effectiveness Endpoint - OSDI

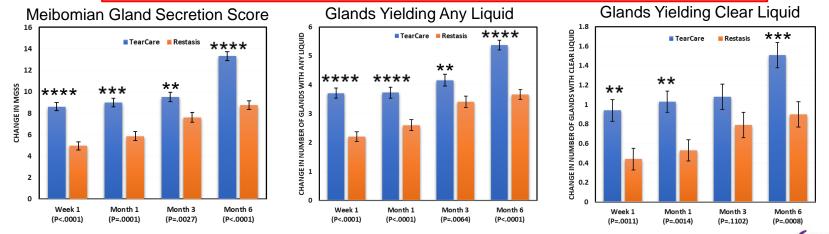

Endpoint - OSDI Change from Baseline

TearCare <u>non-inferior</u> to Restasis in OSDI change from baseline at 6 months (P=.9843)

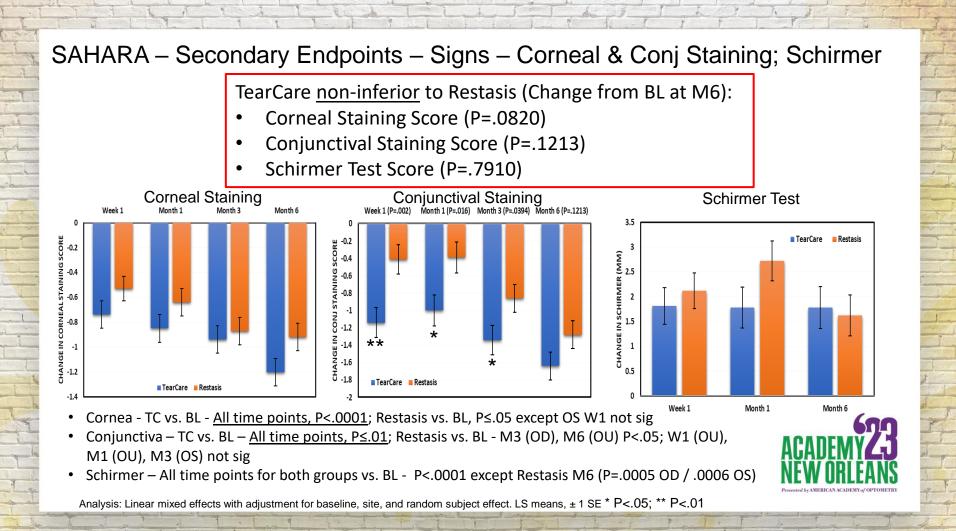
All time points, both groups p<.0001 vs. baseline

Analysis: ANCOVA model with adjustment for baseline and site. LS means, ± 1 SE

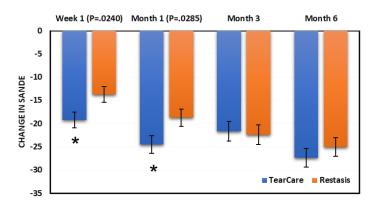
OSDI scale is 0 to 100

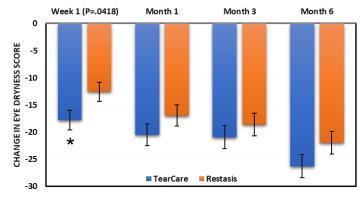

Based on the score, the patients' symptoms can be categorized as: normal (0–12), mild dry eye (13–22), moderate dry eye (23–32), or severe dry eye (33–100)

SAHARA – Secondary Endpoints – Signs – Meibomian Gland Outcomes


TearCare superior to Restasis in change from BL at M6 for:

- Meibomian gland secretion score (MGSS) (P<0.0001)
- Number of glands yielding any liquid (MGYALS) (P<0.0001)
- Number of glands yielding clear liquid (MGYCLS) (P<.0008)




Analysis: Linear mixed effects with adjustment for baseline, site, and random subject effect. LS means, ± 1 SE

MGSS, MGYALS - All time points, both groups, P<.0001 vs. baseline MGYCLS – All time points for TC group P<.0001 vs, baseline; Restasis p<.001 for Wk1, M1, M3 and <.0001 M6 * P<.05; ** P<.01; *** P<.001; **** P<.0001

SAHARA – Secondary Endpoints – Symptoms

Symptom Assessment In Dry Eye (SANDE)

TearCare <u>non-inferior</u> to Restasis in SANDE change from baseline at 6 months (P=.4222)

All time points, both groups p<.0001 vs. baseline

Eye Dryness Score

TearCare <u>non-inferior</u> to Restasis in EDS change from baseline at 6 months (P=.1492)

All time points, both groups p<.0001 vs. baseline

* P<.05 Analysis: ANCOVA model with adjustment for baseline and site. LS means, ± 1 SE

SAHARA - Safety

Both treatments were generally safe and well tolerated

- 19 adverse events (AE) in each treatment group (11.0%)
 - 2 in the TearCare group and 8 in the Restasis group were graded as possibly related to study treatment
 - All graded as mild (n=9) or moderate (n=1) in severity.
- Ocular AEs occurring in 2 or more eyes were:
 - 2 cases of loss of BCVA>10 letters (both in the Restasis group)
 - 2 cases of medication instillation discomfort (both in the Restasis group)
 - 2 cases of conjunctival hyperemia (one in each group)
- No statistically or clinically significant changes or differences between treatment groups were seen in BCVA or IOP.

Conclusions

When 2nd generation TearCare technology and procedure was compared to Restasis, TearCare was:

- Statistically superior in TBUT and multiple measures of meibomian gland secretion
- Non-inferior to Restasis in OSDI, corneal and conjunctival staining, SANDE score, EDS, and STS, providing statistically significant and clinically meaningful improvement.

Conclusions

- Traditional therapy for DED (typically eyedrops) is reliant on patient adherence for effectiveness but patients with DED often do not adhere to their eyedrops at the specified frequency.²
- In this study as in many clinical trials³, subject adherence to drop therapy was very good (not typical of "real-world" behavior) and used an average 5.7 bottles over 6 months.
- TearCare does not rely on patient adherence, thus outcomes reported here should be similar to "real world" use.

Uchino M, et al. J Clin Med. 2022;11(2):367.
Osterberg L, Blaschke T. N Engl J Med. 2005;353(5):487-497

